Contents

MLJFlux 简单使用

介绍

MLJFlux 就是 MLJ 框架对 Flux 的封装,由于我学不会 Flux ,所以我就退而求其次,学别人装好的工具 同学们可以参照这个 PlayGround 来学习 MLJFlux

其中

  • features 表示特征
  • hidden layers 表示隐藏层
  • learning rate 设置学习率
  • activation 设置每个神经元的激活函数
  • regularzation 设置正则化方法
  • regularzation rate 设置正则化惩罚力度

但在 MLJ 和 MLJFlux 中,你是找不到任何有关学习率的参数设置的,因为已经有方法可以不设置学习率了,具体参考这篇文章 在 MLJFlux 中,有以下几种模型

model type prediction type scitype(x) <: _ scitype(y) <: _
NeuralNetworkRegressor Deterministic Tale{Continuous} with n_in columns AbstractVectir{<:Continuous} n_out = 1
MultitargetNeuralNetworkRegressor Deterministic Table{Continuous} with n_in columns <: Table(Continuous) with n_out columns
NeuralNetworkClassifier Probabilistic <:Table(Continuous) with n_in columns AbstractVector{<:Finite} with n_out classes
ImageClassifier Probabilistic AbstractVector(<:Image{W,H}) with n_in = (W, H) AbstractVector{<:Finite} with n_out classes

他们的参数有

  • builder : Default = MLJFlux.Linear(σ=Flux.relu) (regressors) or MLJFlux.Short(n_hidden=0, dropout=0.5, σ=Flux.σ) (classifiers)
  • optimiser : The optimiser to use for training. Default = Flux.ADAM()
  • loss : The loss function used for training. Default = Flux.mse (regressors) and Flux.crossentropy (classifiers)
  • n_epochs : Number of epochs to train for. Default = 10
  • batch_size : The batch_size for the data. Default = 1
  • lambda : The regularization strength. Default = 0. Range = [0, ∞)
  • alpha: The L2/L1 mix of regularization. Default = 0. Range = [0, 1]
  • rng: The random number generator (RNG) passed to builders, for weight intitialization, for example. Can be any AbstractRNG or the seed (integer) for a MersenneTwister that is reset on every cold restart of model (machine) training. Default = GLOBAL_RNG.
  • acceleration: Use CUDALibs() for training on GPU; default is CPU1().
  • optimiser_changes_trigger_retraining : True if fitting an associated machine should trigger retraining from scratch whenever the optimiser changes. Default = false

来调几个用的上的参数来说吧,

  • builder 那个 hidden layer 的表示
  • optimiser 代表优化器,具体文档在这里
  • loss 表示损失函数
  • n_epochs 表示训练次数
  • batch_size 表示每次拿几个数据一起处理
  • lambda 表示正则化惩罚力度
  • alpha 表示 l2/l1 混合的比例 ?

实例

对照上图,以分类问题为例,我们需要新建一个 builder 结构来表示隐藏层,

  • 隐藏层有4层
  • 每一层分别有6,6,6,2个神经元
  • 每个神经元的激活函数是 ReLu
  • 正则化方法是l1
  • 正则化惩罚力度是 0.01

由此,创建一个 builder

mutable struct NetworkBuilder <: MLJFlux.Builder
  n1::Int # 第一层神经元数
  n2::Int # 第二层神经元数
  n3::Int # 第三层神经元数
  n4::Int # 第四层神经元数
end

再为其重载 MLJFlux.build 方法

function MLJFlux.build(model::NetworkBuilder, rng, nin, nout)
  init = Flux.glorot_uniform(rng)
  return Chain(
    Dense(nin, model.n1, relu, init = init),
    Dense(model.n1, model.n2, relu, init = init),
    Dense(model.n2, model.n3, relu, init = init),
    Dense(model.n3, model.n4, relu, init = init),
    Dense(model.n4, nout, relu, init = init)
  )
end

其中

  • rng 表示随机数生成器,大概是这个意思
  • nin 表示输入的特征个数
  • nout 表示输出的结果个数

当然,这些不用我们设置,我们只是提供一个方法实现

接下来就可以定义模型了

classifier = NeuralNetworkClassifier(
  builder = NetworkBuilder(6, 6, 6, 2),
  finaliser = softmax,
  epochs = 200,
  batch_size = 10,
  lambda = 0,
  alpha = 0.01
)

他的训练次数是 epochs 而不是 n_epochs ,不知道是不是文档写错了,大家按照这个来就好了 定义完模型,就像 MLJ 模型那样调用就好了

使用 MLJFlux 预测波士顿房价

准备

using MLJFlux
using MLJ
using DataFrames: DataFrame
using Statistics
using Flux
using CSV
using StableRNGs
using Plots

import Random.seed!;
seed!(123)
rng = StableRNG(123)
plotly()

originData = CSV.read("data/titanic/train.csv", DataFrame)

数据处理

typeTransformModel!(dataframe::DataFrame) = begin
  if in("Survived", names(dataframe))
    coerce!(dataframe, :Survived => Multiclass)
  end

  coerce!(dataframe, Count => Continuous)
  coerce!(dataframe, Textual => Multiclass)

  return dataframe
end

fillMissingModel = FillImputer(
  features=[:Age, :Embarked],
  continuous_fill = e -> skipmissing(e) |> mode,
  finite_fill = e -> skipmissing(e) |> mode)

newFeatureModel!(dataframe::DataFrame) = begin
  # MODULE FeatureA 聚集 Age, Sex --> 12岁以下儿童以及妇女,12岁以上男性
  feature_filter_a(age, sex) = age >= 12 && sex == "male" ? "A" : "B"
  dataframe[!, :FeatureA] = map(feature_filter_a, dataframe[!, :Age], dataframe[!, :Sex])

  # MODULE FeatureB 聚集 SibSp, Parch ---> 家庭人员数量
  family_size(number) = begin
    if number == 1
      return 0
    elseif number >= 2 && number <= 4
      return 1
    else
      return 2
    end
  end

  dataframe[!, :FeatureB] = map(family_size, dataframe[!, :Parch] .+ dataframe[!, :SibSp] .+ 1)

  # MODULE FeatureC log(Fare + 1), encode(Pclass) -> 1, 2, 3  
  dataframe[!, :Fare] = map(floor, log.(dataframe[!, :Fare] .+ 1))


  # TODO don't forget to coerce scitype
  coerce!(dataframe, :FeatureA => Multiclass, :FeatureB => Continuous)
  return dataframe
end

encodeModel = OneHotEncoder(features=[:Embarked, :FeatureA])
dropUnusedModel = FeatureSelector(features = [:Age, :Sex, :SibSp, :Parch, :Cabin, :PassengerId, :Name, :Ticket], ignore=true)

transformModel = (
  typeTransformModel!,
  fillMissingModel,
  newFeatureModel!,
  encodeModel,
  dropUnusedModel
)
transformMachine = machine(transformModel, originData)

fit!(transformMachine)
outputData = MLJ.transform(transformMachine, originData)


originSample = CSV.read("data/titanic/test.csv", DataFrame)
# generic typeTransformModel, ignore
fillMissingModel = FillImputer(features=[:Age, :Fare], continuous_fill = e -> skipmissing(e) |> mode)

# generic new feature generate
# generic encode model
# generic drop unused
transformSampleModel = Pipeline(
  typeTransformModel!,
  fillMissingModel,
  newFeatureModel!,
  encodeModel,
  dropUnusedModel)

transformSampleMachine = machine(transformSampleModel, originSample)
fit!(transformSampleMachine)

outputSample = MLJ.transform(transformSampleMachine, originSample)

Y, X = unpack(outputData, colname -> colname == :Survived, colname -> true)

模型训练

rng = StableRNG(1234)
trainRow, testRow = partition(eachindex(Y), 0.7, rng=rng)

mutable struct NetworkBuilder <: MLJFlux.Builder
  n1::Int
  n2::Int
  n3::Int
  n4::Int
end

function MLJFlux.build(model::NetworkBuilder, rng, nin, nout)
  init = Flux.glorot_uniform(rng)
  return Chain(
    Dense(nin, model.n1, relu, init = init),
    Dense(model.n1, model.n2, relu, init = init),
    Dense(model.n2, model.n3, relu, init = init),
    Dense(model.n3, model.n4, relu, init = init),
    Dense(model.n4, nout, relu, init = init)
  )
end

classifier = NeuralNetworkClassifier(
  builder = NetworkBuilder(10, 6, 6, 6),
  finaliser = softmax,
  epochs = 200,
  batch_size = 10,
  lambda = 0.01,
  alpha = 0.4
)

mach = machine(classifier, X, Y)
fit!(mach, rows = trainRow)

measure = evaluate!(mach,
		    resampling = CV(nfolds = 6, rng = rng),
		    measure = cross_entropy,
		    rows = testRow)

导出结果

outputPredict = mode.(predict(mach, outputSample)) |> nums -> convert(Vector{Int}, nums)

output_frame = DataFrame()
output_frame[!, :PassengerId] = convert(Vector{Int}, originSample[!, :PassengerId])
output_frame[!, :Survived] = outputPredict
CSV.write("data/titanic/predict.csv", output_frame)